Dramatic Improvement of the 41.8 nm Xe⁸⁺ Laser Output using a Multi-mode, Gas-filled Capillary Waveguides

T. Mocek, S. Sebban, I. Bettaibi, V. Vorontsov

Laboratoire d'Optique Appliquée (LOA), ENSTA-École Polytechnique, Palaiseau France

C. M. McKenna, D. J. Spence, A. J. Gonsavles, S. M. Hooker Department of Physics, University of Oxford, Clarendon Laboratory, Oxford United Kingdom

B. Cros, G. Maynard

Laboratoire de Physique des Gaz et des Plasmas, Université Paris-Sud, Orsay France

Outline

I. Introduction

- **II. Experiment with sapphire capillary** (proof-of-principle)
- **III. Experiment with glass capillaries** (detailed investigation)
- **IV.** Summary

- 1994 3 specific schemes for collisional OFI XRL proposed (Xe⁸⁺, Kr⁸⁺, Ar⁸⁺)
- 1995 demonstration of the Xe⁸⁺ laser at **41.8 nm** (Stanford University)
- 2000 **saturated amplification** of the Xe⁸⁺ laser (LOA)
- 2002 demonstration of the Kr⁸⁺ laser at **32.8 nm** (LOA)

<u>Major problem</u>: length of **plasma too short** due to ionization–induced refraction

2003 - demonstration of **Xe⁸⁺** laser in a **plasma waveguide** (LOA/Oxford/LPGP)

Alternative: gas-filled capillary

Problem with "small" (mono-mode) capillary is its **lifetime**

II. Experiment with sapphire capillary

Optimized lasing with cell and capillary

Pressure dependence

15-mm long cell/capillary

Effect of the focus position

15 mm cell/capillary, Xe at 17 Torr

Numerical simulation of propagation

Time-dependent propagation of the driving pulse (developed from the original code of G.J. Pert, University of York):

- 1. paraxial wave equation solved in cylindrical geometry
- 2. gas ionization (OFI) is taken self-consistently
- *Included:* ionization induced refraction - relativistic self-focusing
- *Excluded:* hydrodynamic effects
- <u>Capillary wall:</u> simulated by a boundary layer with a dielectric constant which is adjusted so as to reproduce the measured value of transmitted pump energy (80% at 17 Torr, 40% at 25 Torr)
- Laser field: sum of several Gaussian modes as the best fit of the experimentally measured fluence profile in vacuum

Importance of the beam profile

As the **radius** of the capillary is **5 x** larger than the **focal spot**, a large part of the energy which is outside the central spot can enter the capillary tube.

Calculated distribution of charge states

- 0.81 μm laser, 1 x 10^{18} Wcm^2, 34 fs, circular polarization

- position of vacuum focus 6 mm inside, Xe at 17 Torr

- Xe^{8+} generated up to z=8 mm
- **no improvement** when focusing beyond 6 mm

- Xe^{8+} over the **whole length**
- **sensitive** to the focusing, region of Xe^{8+} is largest for z=6 mm

Modeling of radiative transfer

 $I_{XRL}(z,r,\theta)$

Amplification of axial emission in an active medium

$$\frac{\partial I}{\partial z} = gI + J_0 \qquad g(z) = \frac{G_0}{1 + I(z) / I_{sat}}$$

+

Refraction of the XUV laser beam

$$\frac{d}{ds}\left(n\frac{d}{ds}\vec{r}\right) = \vec{\nabla}n\left(\vec{r}\right)$$

Assumptions:

- G_0 and J_0 are constant along the amplifier axis
- previously measured values of G_0 and J_0 were used
- delay between the IR and XUV photon is neglected
- only photons travelling in the positive direction are considered

Position of vacuum focus 6 mm inside

Length of cell/capillary (mm)

Experiment vs. modeling: focus

Calculated divergence of the Xe⁸⁺ laser

Large improvement of the XUV beam quality is expected...

III. Experiment with glass capillaries

Cell vs. capillary

<u>*To be clarified:*</u> effect of surface quality, laser propagation, capillary alignment

Pressure dependence

capillary diameter 300 μm

Footprint measurement

6

2 0 2 6 mrad

capillary

6 mrad

divergence: ~8 mrad

divergence: ~4 mrad

Summary

- Demonstration of X-ray laser using multi-mode, gas-filled capillary
- Large enhancement of the Xe⁸⁺ laser output

 $\sim 10^{11}$ photons/pulse (0.8 µJ) at 10-Hz, stable operation

- Improvement of divergence: ~4 mrad
- Very good agreement between experiment and simulations
- Advantages of capillary: robustness, simple design

Acknowledgments: LOA laser team, G.J. Pert & L.M. Upcraft (University of York)

