Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering

COMPARATIVE UV DIAGNOSTICS STUDIES OF LASER GENERATED PLASMA VS ELECTRICAL DISCHARGE PLASMA IN EVACUATED POLYETHYLEN CAPILLARY

A. Fojtík, S.Palínek, M. Vrbová

Prague 2004

Motivation

 Understand the dynamics of laser generated plasma in capillary

•Perform the time-resolved UV diagnostics of the radiation emitted by this plasma

•Compare the results with the spectra emitted by a fast electric discharge

Experimental set-up

Energy density: < 10e14 W/cm^2 1-laser beam, 2-glas window, 3- quartz lens, 4polyethylen capillary, 5-vacuum chamber, 6quartz window, 7-grating monochromator, 8photomultiplier tube, 9-oscilloscope

Experimental set-up

Capillary - white polyethylene

1.1 mm in inner diameterseveral cm in length.

Vacuum chamber

•pumped up to 10e-5 Pa (3.10e-7 torr)

Ruby laser beam:

passive mode-locking regime
λ = 694 nm
energy of the pulse - 600 mJ

Waveform of the selected lines

graphs of intensity profiles as functions of time

Experimental results

graphs of intensity profiles as functions of wavelength

Graphs of intensity profiles

• graphs of intensity profiles in case of laser produced plasma

• graphs of intensity profiles in case of electrical discharge capillary plasmas

Comparative graphs

Case of:

- capillary plasmas (5 bottom lines)
- laser produced plasma
 (the upper line)

Comparative graphs of intensity profiles as functions of wavelength

Conclusion

•We have built and experimental system dedicated to this purpose

•We have measured the time-resolved spectrum in the range between 200 and 300 nm

 Most of the energy peaks belong to the same energy levels and transitions

Thank you for your attention